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Abstract

We present the first hybrid simulations with kinetic ions and recently developed equations of

state for the electron fluid appropriate for reconnection with a guide field. The equations of

state account for the main anisotropy of the electron pressure tensor. Magnetic reconnection is

studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model

with the equations of state is compared to two other models, hybrid simulations with isothermal

electrons and fully kinetic simulations. Including the anisotropic equations of state in the hybrid

model provides a better match to the fully kinetic model. In agreement with fully kinetic results,

the main feature captured is the formation of an electron current sheet that extends several ion

inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the

X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated

reconnection rate in this regime nevertheless remains similar in all three models. Implications for

global modeling are discussed.
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I. INTRODUCTION

Magnetic reconnection plays a central part in the dynamics of the magnetosphere, the

solar wind, the solar corona, and a variety of other space plasmas where particle collisions

are negligible [1]. In these collisionless plasmas, kinetic effects may strongly modify the

evolution of reconnecting current sheets. Observing the small-scale layers, typically referred

to as diffusion regions, where kinetic effects are essential is a main goal of NASA’s MMS

mission [2]. As higher-resolution observations become available, it is more important to

accurately reproduce the fine details of the reconnection layers when comparing numerical

simulations to measurements.

Resolving all of the kinetic scales in simulations of very large systems or in global models

is generally not feasible. For this reason, a variety of reduced models have been considered for

simulating magnetic reconnection [3]. While the Hall MHD model was found to be a minimal

model that allows reconnection to proceed at a fast rate comparable to observations, Hall

MHD does not reproduce the details of the reconnection region. One proposal to capture

these details is to use higher-order fluid moment equations that retain pressure anisotropy,

pressure agyrotropy, and thermal heat fluxes [4–7]. In general, however, it remains unclear

how to correctly truncate the fluid hierarchy of equations for collisionless systems, and these

simulations typically rely on tuned transport parameters to match fully kinetic simulations.

Another approach is to only retain the ion kinetic effects. Hybrid modeling, in which

the ions are treated kinetically and the electrons are treated as a fluid, offers a means

of studying the ion kinetics of reconnection [8–10] without resolving the electron kinetic

scales. A number of hybrid codes have been used to study ion kinetic effects in magnetic

reconnection, some including ad hoc treatments of the electron pressure tensor [11–19]. The

importance of treating the ions kinetically was demonstrated in a recent comparison of fluid,

hybrid, and fully kinetic models of magnetic island merging, where reconnection was found

to be qualitatively different between kinetic and fluid ion models even on MHD scales [20].

In hybrid codes, the question remains of what closure to employ for the electron fluid.

Anisotropic equations of state for the main components of the electron pressure tensor, pe‖

along the local magnetic field and pe⊥ perpendicular to the field, have been derived for

conditions typical of reconnection with a guide magnetic field [21]. A primary mechanism

for generating the electron pressure anisotropy is the adiabatic trapping of electrons in a
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parallel electric field structure [22, 23]. While this anisotropy is not capable of breaking

the frozen flux condition in itself [24], the electron pressure anisotropy strongly modifies the

structure of the current layers that develop in the reconnection layer [25–28]. Depending

on the strength of the guide magnetic field and the electron βe, several different regimes

are possible for the reconnection region [26]. The anisotropy is especially important in a

regime with a range of intermediate guide magnetic fields, where the electron anistropy with

pe‖ > pe⊥ drives a current sheet that extends several di from the X-line and is not limited to

electron kinetic scales. This regime has so far only been produced in fully kinetic simulations

with high mass ratios mi/me & 400 [26], and it is therefore not yet possible to study this

regime in large 3D systems with a fully kinetic treatment.

Here, we implement the anisotropic electron equations of state in the hybrid code H3D

[17] and simulate the reconnection of a force-free current sheet and a Harris sheet, both

including a guide magnetic field. While the reconnection of a force-free sheet has previ-

ously been studied in a two-fluid framework including the electron equations of state [25],

the simulations presented are the first to additionally include ion kinetics. Simulating the

reconnection of a Harris sheet with the electron equations of state entails additional compli-

cations, and such simulations have not previously been performed. In each case, the hybrid

model including electron anisotropy reproduces details of the reconnection region observed

in fully kinetic simulations. In particular, extended electron current sheets develop in the

exhaust in the hybrid model with electron anisotropy that are comparable to the fully ki-

netic results, while the current layer remains short in the the hybrid model with isotropic

electrons. The current sheet modifies the structure of the Hall magnetic fields, while the

the saturated reconnection rate remains similar in both hybrid models and the fully kinetic

model.

II. HYBRID MODEL AND EQUATIONS OF STATE

In the hybrid code H3D [17], ions are treated kinetically by the particle-in-cell method.

The electrons are treated as a massless fluid, and the electron dynamics enter through an

Ohm’s law for the electric field of the form:

E = −ui ×B +
1

ne
J ×B −

1

ne
∇ · Pe + ηJ − ηH∇

2J (1)
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where the current density is defined through Ampere’s law without displacement current

µ0J = ∇× B (implying the system is non-relativistic and does not resolve light waves).

The magnetic field is evolved as usual with Faraday’s law ∂B/∂t = −∇×E.

The equations are completed by a fluid closure for the electron pressure tensor Pe. The

simplest closure is found by assuming an isotropic pressure pe with an equation of state of

the form pe ∝ nγ , where quasi-neutrality is assumed and the electron density n is therefore

set equal to the ion density computed from the numerical ions within each cell of the com-

putational grid. A value of γ = 1 gives the isothermal limit, and γ = 5/3 is the adiabatic

limit.

Anisotropy of the electron pressure tensor, however, has been found to dominate the

dynamics of the diffusion region where electron current layers form [27], pointing to the

need to capture this effect in the electron fluid closure. A primary mechanism for generating

the electron pressure anisotropy is the adiabatic trapping of electrons in a parallel electric

field structure [21–23, 29]. This mechanism follows from a drift kinetic treatment with the

additional assumption that the parallel motion of trapped electons is adiabatic. It therefore

applies to general geometries with expanding or contracting flux tubes, and it is not limited

to the reconnection problem. For the case of reconnection, the electron trapping produces

electron pressure anisotropy with components pe‖ along the local magnetic field and pe⊥

perpendicular such that typically pe‖ > pe⊥ in the reconnection layer.

When a given magnetic flux tube extends into an upstream region with uniform plasma

conditions, the equations of state depend only on the local values of the density n and

magnetic field strength B normalized to their upstream values in the flux tube. For upstream

plasma that contains isotropic Maxwellian electrons at density n∞, pressure p∞, and an

ambient magnetic field of strength B∞, the equations of state take the approximate form

[21]:

p̃e‖(ñ, B̃) = ñ
2

2 + α
+

πñ3

6B̃2

2α

2α + 1
(2)

p̃e⊥(ñ, B̃) = ñ
1

1 + α
+ ñB̃

α

α + 1
(3)

where α = ñ3/B̃2 and, for any quantity Q, Q̃ = Q/Q∞. These are the equations of state

implemented in our hybrid code to account for electron pressure anisotropy. The expressions

in Eqs. 2 and 3 above highlight two opposite limits. For α ≪ 1, there are essentially no

trapped electrons, and the equations of state reduce to the isothermal form pe‖ = pe⊥ = nT∞
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with a uniform temperature. In the opposite limit of α ≫ 1, most electrons are trapped

and cannot carry a heat flux, so the electrons follow the double adiabatic CGL equations

of state [30] with pe‖ ∝ n3/B2 and pe⊥ ∝ nB. The equations of state interpolate between

theses two limits based on the portion of electrons that follow trapped trajectories.

III. RECONNECTION IN A FORCE-FREE SHEET

The first system that we study using the hybrid code with anisotropic electron equations

of state is a force-free current sheet. This configuration, including the anisotropic electron

equations of state, has previously been simulated using a two-fluid formulation in the HiFi

numerical framework [25, 31]. A main conclusion of the fluid study was that including

electron pressure anisotropy led to the formation of an extended electron current sheet in

the exhaust, a feature observed in kinetic simulations but not captured in previous fluid

codes. As described below, the hybrid model with electron anisotropy also reproduces the

elongated current layer, while now also resolving ion kinetic effects.

It is relatively easy to implement the electron equations of state of Eqs. 2 and 3 in a

force-free current sheet simulation because the initial density and magnetic field strength

are uniform, and they therefore enter the equations of state only as global constants. In

particular, the initial force-free current sheet in our simulations has magnetic field and

density profiles of the form:

Bx(z) = B0 tanh(z/λ) (4)

By(z) =
√

B2
g + B2

0
− Bx(z)2 (5)

Bz(z) = 0 (6)

n(z) = n0 (7)

where we take λ = 1di =
√

mic2/ǫ0n0e2 and Bg/B0 = 0.3. An initial magnetic perturbation

of the form

δBx(x, z) = −δB(Lx/2Lz) cos(2πx/Lx) sin(πz/Lz) (8)

δBz(x, z) = δB sin(2πx/Lx) cos(πz/Lz) (9)

with δB/B0 = 0.01 seeds reconnection with a single X-line. We initialize kinetic particle

populations with Maxwellian distributions. In the fully kinetic simulation, the electron
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FIG. 1: Electron currents in a reconnected force-free sheet. The out-of-plane current density at

time t = 60/Ωci from (a) a fully kinetic simulation, (b) a hybrid simulation with electron pressure

anisotropy, and (c) a hybrid simulation with isotropic pressure.

Maxwellian is drifting in order to carry the parallel current that generates the sheared

magnetic field. The initial uniform temperatures are chosen so that βe = 2µ0n0Te/B
2

0
= 0.1

and Ti/Te = 5. Simulations are performed in domains of size Lx × Lz = 40di × 20di with

5120 × 2560 cells for the fully kinetic runs and 1024 × 1024 cells for the hybrid runs. The

x boundaries are periodic, and the z boundaries are conducting and reflect particles. There

are ∼ 400 particles per cell of each kinetic species, and the fully kinetic runs had a mass

ratio mi/me = 400 and ωpe/Ωce = 2.

The simulation parameters were selected so that the reconnection layer would fall into

Regime 3 of Ref. [26]. This regime contains a moderate guide magnetic field that is strong

enough to magnetize the electrons essentially everywhere, and the electron pressure remains

anisotropic into the reconnection exhaust. An extended current layer may then form, which
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FIG. 2: Normalized pressure anisotropy measures F = µ0(p‖ − p⊥)/B2 (F = 1 is the firehose

instability threshold). Electron anisotropy from (a) a fully kinetic simulation and (b) a hybrid

simulation with anisotropic electron equations of state. The ion pressure is also anisotropic in both

(c) the fully kinetic run and (d) the hybrid run.

is not limited to electron kinetic scales. As in the two-fluid simulations of Ref. [25], the most

apparent difference between simulations with and without electron pressure anisotropy is

the formation or absence of this extended electron current sheet. The out-of-plane current

density is plotted in Fig. 1 from each of the three simulations. The extended exhaust current

sheet that forms in the fully kinetic simulation in Fig. 1(a) is reproduced by the hybrid run

with electron anisotropy in Fig. 1(b), while it does not appear in the hybrid simulation with

isotropic, isothermal electrons in Fig. 1(c).

As described previously, the extended current sheets form when the electrons approach

the firehose instability threshold µ0(pe‖ − pe⊥)/B2 ∼ 1 [25–27, 32, 33]. The normalized

electron pressure measure Fe = µ0(pe‖ − pe⊥)/B2 is plotted from the fully kinetic run in

Fig. 2(a) and from the hybrid run with anisotropic closure in Fig. 2(b). In both cases,

Fe peaks around 0.7. This level of pressure anisotropy is necessary to balance the J × B

tension force on the electrons, and the anisotropy drives an additional cross-field electric

current density Je⊥ ∼ [(pe‖−pe⊥)/B]b̂× b̂ ·∇b̂. This regime thus requires a guide magnetic

field strong enough the magnetize the electron orbits, but weak enough that the electron

pressure anisotropy can balance the field line tension.
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FIG. 3: The reconnection rate averaged over a 2di square box centered on the X-line. The saturated

rates are similar in all cases.

Also plotted in Fig. 2 is the ion pressure anisotropy, which is captured by the kinetic treat-

ment of the ions in the fully kinetic and hybrid formulations. In larger simulation domains,

the ion pressure anisotropy is found to strongly influence the reconnection dynamics. It may,

for example, be as important as ion inertia for setting the outflow speed of the reconnection

exhaust [9]. And in addition to possibly driving instabilities, strong ion pressure anisotropy

modifies the structure of boundary layers that may form in the exhaust [34]. The ions, how-

ever, are poorly magnetized in this regime with moderate guide field. As a result, the ion

pressure is not only anisotropic in pitch angle with respect to the local magnetic field, but it

is also anisotropic, or agyrotropic, with respect to the azimuthal direction around the mag-

netic field. The agyrotropy measure [35] applied to the ions 2(pi⊥1−pi⊥2)/(pi⊥1+pi⊥2) > 0.3

in large sections of the exhaust. It has been suggested that these ion kinetic effects are re-

sponsible for the discrepancy in the global evolution between kinetic (either hybrid or fully

kinetic) models and Hall MHD models of reconnection during magnetic island coalescence

[20].

The reconnection rates averaged over 2di boxes centered on the X-line are plotted over

the course of the simulations in Fig. 3. During the initial transient phase, the reconnection

rates differ. One reason is that secondary magnetic islands may form, and the details of

this process are extremely sensitive to the initial conditions. In any case, the saturated

reconnection rates are roughly the same for all three cases. The extended current sheet in

the exhaust therefore does not in itself alter the quasi-steady reconnection rate.
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FIG. 4: Electron currents in a reconnected Harris sheet from (a) a fully kinetic simulation, (b)

a hybrid simulation with electron pressure anisotropy, and (c) a hybrid simulation with isotropic

pressure.

IV. RECONNECTION IN A HARRIS SHEET

The second system we consider is a reconnecting Harris sheet. The initial Harris sheet

profiles are:

Bx(z) = B0 tanh(z/λ) (10)

By(z) = Bg (11)

Bz(z) = 0 (12)

n(z) = nb + n0 sech2(z/λ) (13)

where for our case we take λ = 1di and Bg/B0 = 0.2. The initial temperatures are chosen

with Ti/Te = 5, while force balance across the layer now requires n0(Ti +Te) = B2

0
/2µ0. The
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background density is selected so βe∞ = 2µ0nbTe/B
2

0
= 0.1. The simulation domains are the

same as for the force-free sheet; they are of size Lx×Lz = 40di×20di with 5120×2560 cells for

the fully kinetic runs and 1024 × 1024 cells for the hybrid runs with periodic x boundaries

and conducting z boundaries that reflect particles. There are again ∼ 400 particles per

cell of each kinetic species, and the fully kinetic runs had a mass ratio mi/me = 400 and

ωpe/Ωce = 2.

The Harris sheet involves an additional complication to implement the anisotropic equa-

tions of state because the initial conditions no longer contain uniform magnetic field mag-

nitude and density. The equations of state in Eqs. 2 and 3 involve quantities normalized

to their upstream values, and the upstream values must now be determined independently

for each flux tube. The initial upstream conditions must then be tracked for each flux tube

as it convects, distorts, and possibly reconnects. In a 2D system, this is made possible by

labeling each flux tube with a flux coordinate (out-of-plane vector potential component) Ψ.

For the initial Harris sheet, Ψ is given by

Ψ = −B0λ · ln[cosh(z/λ)], (14)

and its time evolution follows from ∂Ψ/∂t = −Ey. The initial Harris sheet density and

magnetic field strength profiles may be written in terms of Ψ as:

n(Ψ) = nb + n0 exp

(

2Ψ

B0λ

)

(15)

B(Ψ) =

√

B2
g + B2

0
− B2

0
exp

(

2Ψ

B0λ

)

(16)

As the Harris sheet reconnects and Ψ(x, z, t) evolves, the above expressions determine the

initial upstream density and magnetic field at any point.

It turns out, however, that the values of n and B given by Eqs. 15 and 16 are not

appropriate to use directly in the equations of state for the upstream normalizing factors n∞

and B∞. In particular, if Eqs. 15 and 16 were used as is, an unphysical pressure anisotropy

would develop in the center of the Harris sheet when a perturbation of the form of Eq. 9 is

included to seed reconnection. Additionally, in fully kinetic simulations, strong anistropy is

not observed in the very center of the initial Harris sheet even later in the evolution. The

anisotropy is typically most important once upstream plasma convects into the reconnection

layer. In order to prevent this unphysical anisotropy from developing in the center of the
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Harris sheet, we use the following technique. For the normalizing factor B∞ that enters the

equations of state, we use B(Ψ) as in Eq. 16. On the other hand, for the density normalizing

factor n∞, we add an extra term δn to Eq. 15, so that n∞ = n(Ψ) + δn(Ψ). The term δn

may be any function strongly peaked at the center of the initial Harris sheet, and we choose

the particular function

δn(Ψ) = 5 exp

[

−

(

2Ψ

B0λ

)2

− 2(B̃2
− 1)

]

. (17)

Note that δn does not alter the physical density profile. It enters only in the normalization

parameter n∞ in the equations of state given by Eqs. 2 and 3. By making δn large in the

center of the Harris sheet, the parameter α in the equations of state is made small, and the

electrons remain in the isothermal limit in this region.

As in the case of the force-free sheet, electron pressure anisotropy allows an extended

current sheet to form near the X-line. The out-of-plane current from each run is plotted in

Fig. 4. Note that the current sheet is somewhat shorter in the fully kinetic run in Fig. 4(a)

than the hybrid run with anisotropy in Fig. 4(b). This is in part because of the reduced

mass ratio mi/me = 400, which renders the electrons only marginally magnetized in the

fully kinetic run. In particular, the parameter K =
√

RB/ρe (where RB is the magnetic

field line radius of curvature and ρe is the thermal electron Larmor radius) [36] dips to

around 2.5 within the current sheet. This is the approximate cutoff for the electrons to

be treated as fully magnetized, and the higher energy electrons do not have the adiabatic

moment µ well-conserved if they cross the current sheet. The result is to somewhat reduce

the electron pressure anisotropy from the levels predicted by the equations of state. At the

physical proton mass ratio of mi/me = 1836 and moderate electron βe, the electrons are

found to be well-magnetized at the guide field of Bg/B0 = 0.2 used in this simulation [26].

The electron current sheet is again supported by electron pressure anisotropy close to the

firehose threshold [see Fig. 5], and the current sheet exists where the anisotropy measure

Fe & 0.5. The ion pressure also becomes anisotropic as plotted in Figs. 5(c) and (d). As in

the case of the force-free sheet, the ions also display substantial pressure agyrotropy.

The electron currents that are driven near the X-line by pressure anisotropy modify the

structure of the Hall magnetic fields. The Hall field component By is plotted from each

simulation in Fig. 6. The general quadrupolar structure, which results from the Hall term

in the Ohm’s law that freezes the magnetic field into the electron flow, is similar in all
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FIG. 5: Normalized pressure anisotropy measures F = µ0(p‖−p⊥)/B2 for the Harris sheet. Electron

anisotropy from (a) a fully kinetic simulation and (b) a hybrid simulation with anisotropic electron

equations of state. The ion pressure anisotropy from (c) the fully kinetic run and (d) the hybrid

run.

three cases. Nevertheless, the electron current sheet supported by anisotropy in the fully

kinetic simulation and in the hybrid simulation with an anisotropic electron closure generates

additional out-of-plane field near the X-line. This may be seen in the cuts along the mid-

plane plotted in Fig. 6(d), where By is roughly 1.5-2 times as large at the X-line than its

ambient value of By/Bg = 0.2 when there is electron pressure anisotropy, while it remains

at approximately the background value for an isothermal electron closure. The anisotropic

hybrid model does not agree precisely with the fully kinetic model both because the length

of the electron current sheet is somewhat different in the two cases and because the residual

electron pressure anisotropy in the exhaust is a little stronger in the hybrid run than in the

fully kinetic run. As noted in Ref. [33], the magnetic field generated by the current sheet

tempers the electron anisotropy (recall that the equations of state depend on B, and larger

magnetic fields generate weaker anisotropy), so that the level of anisotropy saturates near

the firehose threshold.

As seen in Fig. 7, the reconnection rate again reaches roughly the same level in all three

models. Recently, it was shown that the double-adiabatic anisotropic CGL [30] electron

equations of state allowed fast reconnection to occur in two-fluid simulations without the
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FIG. 6: Out-of-plane Hall magnetic field By profile generated during the reconnection of a Harris

sheet in (a) the fully kinetic simulation, (b) the hybrid simulation with electron anisotropy, and

(c) the hybrid simulation with isothermal electrons. (d) Cuts through the mid-plane reveal that

currents driven by electron pressure anisotropy tend to increase the magnetic field strength near

the X-line.

Hall effect [37]. The equations of state in Eqs. 2 and 3 do not lead to fast reconnection in

themselves, however, and we find in the regime considered here that the electron anisotropy

has little effect on the reconnection rate.
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FIG. 7: Harris sheet reconnection rate. The reconnection rate averaged over a 2di square box

centered on the X-line. Note that the hybrid simulations used a larger initial perturbation, and

the simulations were aligned in time based on total initial reconnected flux.

V. SUMMARY

The equations of state for the electrons during reconnection with a guide field have been

implemented in the hybrid code H3D. The equations of state account for electron pressure

anisotropy that develops during reconnection and is caused by the adiabatic trapping of

electrons. Simulations were performed of reconnection beginning from a force-free current

sheet and from a Harris sheet with a moderate guide magnetic field. In both cases, extended

current sheets formed centered on the X-line supported by electron pressure anisotropy with

µ0(pe‖−pe⊥)/B2 > 0.5 in both the fully kinetic code and the hybrid code with an anisotropic

electron closure. The electron current sheets remained very short in simulations that used

an isothermal electron closure.

The hybrid code with anisotropic electron equations of state is therefore a first step to-

wards the ability to simulate reconnection with moderate guide fields in large systems, such

as global magnetosphere models, that nevertheless couple to ion kinetic length scales and

where electron pressure anisotropy strongly modifies the magnetic structure of the recon-

nection layer. In 3D systems, the electron current sheets may be unstable and break apart

into flux ropes [38], which could play a role in the formation of FTEs at the magnetopause.

Before our model can be applied to more complex systems such the as the magnetosphere,

however, important open questions must be solved. These questions include how to treat

electron anisotropy and agyrotropy at reconnection sites with negligible guide magnetic fields

and how to incorporate non-local effects into the electron closure in realistic 3D geometries
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with complicated initial conditions and without well-defined global flux surfaces.
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